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High-order variational perturbation theory for the free energy

Florian Weissbach, Axel Pelster, and Bodo Hamprecht
Institut fir Theoretische Physik, Freie UniversitBerlin, Arnimallee 14, 14195 Berlin, Germany
(Received 6 March 2002; published 25 September 2002

In this paper we introduce a generalization to the algebraic Bender-Wu recursion relation for the eigenvalues
and the eigenfunctions of the anharmonic oscillator. We extend this well known formalism to the time-
dependent quantum statistical Safirmer equation, thus obtaining the imaginary-time evolution amplitude by
solving a recursive set of ordinary differential equations. This approach enables us to evaluate global and local
guantum statistical quantities of the anharmonic oscillator to much higher orders than by evaluating Feynman
diagrams. We probe our perturbative results by deriving a perturbative expression for the free energy, which is
then subject to variational perturbation theory as developed by Kleinert, yielding convergent results for the free
energy for all values of the coupling strength.
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I. INTRODUCTION Bender-Wu approacfil]. From our perturbative results for
the imaginary-time evolution amplitude we then gain a per-
Most physical problems can only be solved by approxi-turbation expression for the free energy of the anharmonic
mation methods. One of them is perturbation theory thapscillator in Sec. VII, which we check again diagrammati-
yields weak-coupling expansions. Unfortunately, they oftercally in Sec. VIIl. The perturbative results are then re-
do not converge. summed in Sec. IX by means of variational perturbation
The ground state energy of the anharmonic oscillator igheory [5] for intermediate couplingg=1 for which the
the simplest example where this phenomenon can be studiedsual weak-coupling series would diverge. This theory is a
Algebraic recursion relations as proposed by Bender and Weystematic extension of a simple variational approach, first
[1] yield perturbation series for the eigenvaluesergies  developed by Feynman and Kleinert in the path integral for-
and eigenfunctionévave functiong of the time-independent malism. Feynman introduced the path integral formalism as a
Schralinger equation up to arbitrarily high orders. In Rgf] ~ quantization regulation, that represents the operator proper-
the calculation was extended to 250th order. The Bender-wties of quantum physics by fluctuations of the dynamical
recursion relation yields a power series for the anharmonivariables[6,7]. By extending analytically real time to imagi-
part of the wave function both in the coupling strengtand ~ hary time, also quantum statistical quantities can be obtained
in the coordinatex. The power series itx can be cut off by summing over quantum mechanical and thermal fluctua-
naturally by comparing the recursive results with those obtions with the help of path integral§,8]. In order to evalu-
tained from evaluating Feynman diagrams. The resultingite the path integral for the free energy approximately, Feyn-
Weak-coup”ng series for the ground state energy does ndfian and Kleinert developed a variational method in 1986
converge for any value of the coupling strength. This papet9]. It replaces the relevant system by the exactly solvable
deals with both problems: Obtaining high-order perturbatiorharmonic oscillator whose frequency becomes a variational
expressions and making them converge for all values of th@arameter that has to be optimized. Starting with RE®J,
coupling strength. This paper is organized as follows. this method has been systematically extended by Kleinert to
In Sec. Il we perturbatively evaluate the path integral rep-higher orderg5,11]. It is now known as the variational per-
resentation for the imaginary-time evolution amplitude of theturbation theory and yields results for all temperatures and
anharmonic oscillator by means of a generalized Wick'sall coupling strengths.
theorem[3,4]. In Sec. Ill we represent the first-order results  In Sec. X we extend this procedure to higher orders of the
diagrammatically. Doing so, we demonstrate that the algefree energy and cross check the results in Sec. XI.
braic computational cost is very high for the diagrammatic
approach. We also obtain a cross check for the results that Il. PATH INTEGRAL REPRESENTATION
are derived from a differential recursion relation in Sec. IV. i , , , )
In order to cut down on the algebraic computational cost we 1he path integral representation for the imaginary-time
introduce a strategy to exploit the symmetry property of thefVolution amplitude of a particle of masé moving in a
imaginary-time evolution amplitude in Sec. V, thus laying ©n€-dimensional potentiai(x) reads[5]
the foundation.for our high—order rgsults. In Sec._VI we com- x(hB)=x 1 g
bine the resulting algebraic recursion relation with the origi- (Xbﬁ,3|Xa0):J be exp[ _ %J dr
a 0

nal differential recursion relation, thus generalizing the X(0)=x

M
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M In Eqg. (7) we have introduced the classical path
V(x)= §w2x2+gx4,
XaSINh(A B— T)w+ Xy Sinhw T

X = - 9
the imaginary-time evolution amplitud@) can be expanded ol 7 sinh# Bw ©
in powers of the coupling constagt Thus we obtain the . ) )
perturbation series and the Dirichlet Green’s function

f 1
g (" (D) - -
(xbﬁﬁlxam:(xbﬁﬂlxaou[1—g fo dry(x'(r0), + G = g Sinh Be

X[ 6(11— 1o)SINN(AB— 7)) w Sinhw T,

()
where we have introduced the harmonic imaginary-time evo- T 0(rom rysinf(A B =) Sithwry].
lution amplitude (10
X(hB)=Xp ﬁﬁ We follow Refs.[3,4] and evaluate harmonic path expecta-
(Xpft B]X40) = Dx exp[ - —j tion values of polynomials ix arising from the generating
X(m *a functional (7) according to Wick's theorem. Let us illustrate
M M the procedure to reduce the power of polynomials by the
x E'XZ(TH ngXZ(T) } (4  example of the harmonic path expectation value

(X"(71)X™(72) ), -
and the harmonic path expectation value for an arbitrary (i) Contractingx(ry) with x

nt dx™(r,) leads t
functional F[x], () andx™(7,) leads to

Green’s function&e®)(7;,7,) andG®P) (7, 7,) with multi-
plicity n—1 andm, respectively. The rest of the polynomial

M. M
7X (T)+ w?X3(71)

x(hpB
(F[x]),= Wf DxF[x] remains within the harmonic path expectation value, leading
PP e O to (X"~ X(r)X"™(75)),, and(x"~H7)X""Y(13)), .
1 (hp (i) If n>1, extract onex(7,) from the path expectation
X expr - = f dr ]
hlo
(5) (iv) Repeat the previous steps until only products of path
expectation valueéx(r1)),=Xq(71) remain.
The latter is evaluated with the help of the generating func-

value givingxy(71) multiplied by (x"~1(7,)x™(7,))., -
(iii) Add the terms from(i) and (ii).

tional for the harmonic oscillator, whose path integral repre-With the help of this procedure, we obtain to first order

sentation reads

(X4(7)) = X4 () +6X34(7)G P (71, 71) +3G P (7, 7).

_ X(hB)=xp 1 (4B M_, (12
(xbﬁﬂ|xa0)w[1]=f Dx ex —%f dr 5 X (7)
X(0)=x4 0
IIl. FEYNMAN DIAGRAMS
M 2
+—w XA(7) = J(7)X(7) ] (6) These contractions can be illustrated by Feynman dia-
grams with the following rules: A vertex represents the inte-
leading to[5] gration overr,
(Xpf1 B|X50) o[ 11= (Xpf B|X50) hs
1 (4 _ X= /0 " (12)
X ex %f d7iXe(71)j(71) _ N _
0 a line denotes the Dirichlet Green’s function
1 (8 1B
+—2f d71J dr, 1 2 = GO (ry,m), (13
2h° Jo 0

and a cross or a “current” pictures a classical path

XGPry,m)i(m)i(1) |, (D)

x——1 = zg(1). (14)

with the harmonic imaginary-time evolution amplitude ) ) ) )
Inserting the harmonic path expectation valié) into the

Mw V2 B M perturbation expansiof8) leads in first order to the diagrams
2rhisiniBw] P 2% sinh Bw

18
n(etm)). = : 15
><[(x§+x§)cosm,3w—2xaxb]]_ ® /O dri{z*(m)) ><—I—x+6xilx+300 (15)
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We now evaluate the first-order Feynman diagrams in(Eg). for finite temperatures and arbitraxy, x,. Thus we will get
a first-order result for the imaginary-time evolution amplitude in &j. The first diagram leads to

1
I =370 s A o [(x3+x3)(sinh 4% Bew—8 sinh 24 Bw+ 127 Bw)

+(x2x,+x,x;) (4 sinh 3% Bew+36 sinh /i Bw—48% Bw cosh i Bw)
+x2x3(—36 sinh 24 Bw+48% Bw+ 244 Bw cosh 24 Bw)], (16)

and the second diagram reduces to

h
() REL PRIy [(x2+x;)(sinh 3% Bew+9 sinh i Bow— 124 Bw cosh i Bw)
+x,x,(—12 sinh 24 Bow+ 164 Bw+8A Bw cosh 2/ Bw)], (17)
whereas the last diagram turns out to be

ﬁZ
OO = TeiTa s ge 3 Smh2h o+ 4hBe+2he cosh 2% Bw). (18)

So, all in all, we get the following first-order result for the imaginary-time evolution amplitude:
9 h? 9 o 3 3
(th,B|XaO) = (Xbﬁﬂ|Xa0)w 1- g m[— 16 sinh 2hBw+ihBw+ihBw cosh 21,8(1)]

f

+ m[(ngr x2) (& sinh 3 Bw+ & sinhf Bo— 21 Bw cosh Bw) + XXp( — § sinh 2 Bw

+3%Bw+ ifBwcosh X Bw)]+ [(xX¢+xP)(% sinh 4 Bw— % sinh i B+ 2 Bw)

1
o sinf 28w
+ (X3xp+ Xx2) (% sinh 3k Bw+ § sinhf Bw— 34 Bw cosh Bw) +Xx2x3(— £ sinh 24 Bw + 3 £ Bw

+ 2% Bwcosh ZiBw)] ) (19

The imaginary-time evolution amplitude thus has the timeln order to get a corresponding quantum statistical Schro

reversal behavior dinger equation, we now have to change from real time to
imaginary time, i.e., we have to perform the Wick rotation
(Xpfi B%20) = (X4 B]X,0)*, (200 t——ir. Thus the Schidinger equatior(21) becomes
2 2
while it is known that the imaginary-time evolution ampli- _ i __r v ny
tude is real for one-dimensional problems. h g7 om0 == 5 X3 (Xo71Xa0) +VX6) (X57/%50)-

(22)
IV. PARTIAL DIFFERENTIAL EQUATION . . . . .
) For both the real and the imaginary-time evolution ampli-
Consider the Schobnger equation for the real-time evo- tude, the initial condition reads
lution amplitude

. (X60|X40) = 8~ Xa). (23
J
if— = — + . - , . :
K at (X6t|%40) 2M axg(xbt|xa0) V%) (X5t[%50) Substituting the anharmonic oscillator potenti2)l into the

(21)  Schralinger equatior(22), we finally get
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g k% P M gt (7) PR (7)
—ﬁ—-l— _ X *x71x.0)=0. L e 2k+2|1+2
W g 2 e 9% Derlad) 2 g D
24
2 C(znk)||+1(7')
Making the ansatz +(+Do SNt wr
XpT|Xa0) = (Xp7|X30) , A(Xp,X5,7), 25 1 )
( b7'| a0)=( bT| a0) (Xp 1 Xa,7) (25 —%C(Z'L:ﬁ)||_4(T)SInWwT, (30)
where &,7|x,0),, is the harmonic imaginary-time evolution
amplitude(8), we conclude from Eq(24) a partial differen- L
tial equation forA(xy ,X,,7), which is solved by
g h 9 XpCOshwT—X, ¢ g , e, o4 2(7)
=z~ 7 s - ST |I+2
ar 2M ax§+w sinhor g £ P co(m)=(l +2)(|+1)2M J 47 S wr
X A(Xp Xa,7) =0. (26) Chiji+1(7)
+(|+1)wj dTT.
We now choose our ansatz féqx,,X,,7) by introducing SNt w7
three expansions ig, x5, andx, , respectively. Also we take 1 (n-1) ) -
out the factor sinh' wr, such that the ordinary differential - gf drchg)i—4(7) sintf o 7+dyy, . (3D
equations for the expansion coefficients become as simple as
possible,

Here thed(y), denote the integration constants that are fixed
*© 2n by applying the initial condition
A(Xb X ,T)_E 2 Czk“ 'T) 2k |X| . (27) y ppy g
a =0 =0 i< sint wT b -
lim Coii(7) o
sind wr

7—0

In order to obtain the unperturbed resAlfx,,x,,7)=1 for (32

g=0 we neecc{}(7)=1. The superscriph in Eq. (27) de-
notes the perturbative order, whereds éunts the(even
powers of the various productgx},. The summations over
the coordinatex,, X, can be truncated &=2n, because
we learn from Feynman diagrammatic considerations that th
diagram with the most currenisin the nth order looks like

However, the above master equati@d) is not valid for all
k andl. Therefore, we now introduce a set of empirical rules
telling us which of the coefficients$}),(7) have to be
dropped once we write dow31) for any ordem: (i) drop all
terms containing aZk“(r) where X>4n; (ii) drop all terms

containing ac(”)“(r) with 1>2k; and (iii) neglect all terms
. 28) containing ac ||(T) with any negative indicek andl.
To convince the reader that E¢B1) together with this

procedure leads to the correct results we now reobtain our
Inserting the ansatf27) into the Schrdinger equatior(26) first-order result from Eq(19). To that end we set=1, such
and arranging the indices in such a way that each term ithatk runs from 0 to 2 and from 0 to 4. Fixingk=2 and
proportional tox2%~'x{, we get for the different powers gf ~ counting down from =4 to =0,

and forn>0, we get
K
2n 2 X;:zlk IXb &C(”)|I(T) W o . "
k=0 =0 SinH T T 04‘4(7)—_— dTC0|O '7')S|nf‘f1 w7'+d4|4
2n—1 2k-2
) 7) 1 . . .
~om 2 E (HZ)('H)% 2Kyl =%(31—25|nh4w7-—%smh2w7+§smhwr),
=
2n 2k—1 2k\| 1(7_) (33
+ 2k—1,l
- I+ x5
0OEOpE I+ sinH* 27’2 7P i)
CajalT
Q20 2k+4 (n-1) 02‘1%(7') 4(1)J dTSIhhzw +d£d%

CZK 4“ 4(7-) 2k—1.1
s Zﬁ Sl Far 2 Xb= 0. (29

:ﬁ'—h(% sinh 3w+ 2 sinhw7— 32 coshw7),
Thus the sums over and overl collapse and we determine wsinhor

the master equation for our coefficierdts) (1), (34
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¢
(1)) — Caa() )
Cﬂz(T)—’su{[ d S””F(DT_%d4m
= ! (—QSinthT-l-ng
hosinfor: 8 2
+3wrcoshwr), (35
cya(7)
Cir(1) =20 | dr oo +dy]
- (Ll 9 i
_ﬁwsinr?wr(g sinh 3w 7+ 3 sinhwr
—3wrcoshwr), (36)
(1)
C4n(7)
L)\ 41 (1)
C4|O(T)_wf Tsinl’lzw7+d4|0
=;(isinh4wr—lsinh2wr
fiwsintt w7 32 4
+ 2 sinhw7). (37)

Correspondingly, fok=1, we obtain

6% ciha(7)
Cz|2(7')— M fd smII”Fw +d(zﬂ

_ 3 o
_szsinham'(16 sinh 307
+ 2L sinhwr— S w7 coshw7), (38)
(1) (1)
c C55(7)
()¢ a3(7 f 22
Con(m)= fd smh2 demhz(r)

1
“Mo?sinfor

1
+dj]

(—2sinh 207
+3wr+3wrcosh wr), (39

(1)
(1) h Jd C4|2

cshi(7)
- (5]
Co(7)= ssmh2 wr | J 47 Sin2 () T 9200

sint?(7)
1 .
~hw?sin g7 (18 9NN 3T
+ 2l sinhwr— 2w coshwr). (40
Finally for k=0 we get the equation
ﬁ Cz}z( 7)
TSinffwr

f
T M20° sint? wT(

e

C0|o( )= 00

9 .
— 15 Sinh 2w 7

+2 wr+3 orcoshwr). (412)
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FIG. 1. This diagram depicts the path of recursionrierl. We
start in the top right hand corner, which is to be identified with the
coefficientc§j} and follow the arrows until reaching the bottom left
hand corner with the coefﬂmemﬁ,

The path of recursion, which follows from this procedure, is
shown in Fig. 1.

V. EXPLOITING THE SYMMETRIES

As seen above, we already have to solve nine ordinary
differential equations for the first-order imaginary-time evo-
lution amplitude. For any order, the numbeip of integrals
to solve is

2n+1

p= > (2j-
j=1

Due to the time reversal behavidR0), the coefficients
2,(“(7) show a symmetry, namely,

=4n’+4n+1. (42)

C(2r|1)||(7') _ C(2r|]<)|2k7|(7') 3
sinhor  sintfP< w7’

Exploiting the symmetry43), we can cut down the number
(42) considerably. At first sight, it is reduced to

2n+1
p'= > j=2n?+3n+1, (44)
=1

so there are only six integrals left for the first order. But we
can go even further. Employing these symmetries we can
eventually change almost all recursigigferential equations
into purely algebraic ones leaving onlyp”=(2n+1) inte-
grations. So, for the first order, we are left with three inte-
grations only, namely, Eq$393), (38), and(41). The coeffi-
cients c{f)(7), c4i(7), and c{{(r) are integrated
recursively. The other coefficients can then be obtained alge-
braically: Once we have(f)(7), we also knowc{}}(7) be-
cause of the symmetri#3). Comparing Eq(31) for k=2,
I=4 andk=2, | =0 we then obtain an algebraic equation for
ciH(7). The knowledge otSf}(7) gives usc§)(7) because
of the symmetry(43) and by comparing Eq31) this time
for k=2,1=3 on the one hand anld=2, =1 on the other
hand we are left with an algebraic equation é§#(). Thus
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% k<1< 2k are then clear for symmetry reasonBhe diagonal
//;\<= coefficientscly),(7) are yet to be integrated.

VI. COMBINED DIFFERENTIAL AND ALGEBRAIC
/ EQUATION

2 > We now combine the differential recursion with the alge-
braic one. As only the diagonal coefficients have to be evalu-
ated by integrating the differential recursive equation, we can
even further simplify the solutio(81) to our master equation
(30). We only need it for the diagonal coefficients, for which
I+1=2k+1 is always greater thank2 And according to
our index rule(ii), coefficients of the shapuefz’,?‘z,(+1 have to
FIG. 2. This diagram shows which of the first-order coefficientsbe neglected. We get
c(z}()“(r) have to be integrate¢bold) and which ones can be ob-
tained by employing symmetry and algebraic recursigigét).

0 1 2 3 4 4

h cop ()
(n) (oKt N _f 2lc+2|2k:+2
we get all the coefficients fdk=2 only by solving one dif- Carla(7) = (2k+2)(2k+ 1) 5 | d7—g 2
ferential equation, namely, the one ioﬁ{ﬂ(r). Fork=1 the 1
procedure is similiclrk=0 orlly ggnerates one coefficient _ﬁf dTC(Zrll:]A.l)\Zk—4(T)Sinrﬁw7+d(2rl1<)\2k'
anyway, namelyc{i)(7), which still has to be solved by
evaluating one integral. The new path of recursion is shown (47)

in Fig. 2. So finally three out of the nine first-order coeffi-
cients are obtained by integration, three more are clear for ] o ]
symmetry reasons, and three come from an algebraic recut?dex rules(i) and(iii) still have to be appliecs runs from 0
i to 2n.
sion.
We now generalize the algebraic part of our recursion. Let us quickly summarize the combined differential and
Consider again the symmetry prope(8g). Differentiation  @lgebraic recursion relation considering the first order as an

on both sides yields _example. F_igure 2 shows all _first-order coeffic_ie_nts for the
imaginary-time evolution amplitude. Each coefficient is rep-
acgﬁ‘(ﬂ(r) 1 50(2r|1)2k (7) resented by a little circle. Now the coefficients on the diag-
o =) 2k onal line X=1I have to be obtained by referring to Ee.7)
aT sink? oT aT

together with rulesi) and(iii). These two rules tell us which
C(2r|1)|2k—|(7) of the coefficients either from the same oraeor from the
—2(k—l)w cosho T ——=1—. (45  previous ordem—1 have to be integrated and which ones
sint T can be put to zero.

Once we have the diagonal coefficient§), (1), we can
culate the off-diagonal ones witks k with the help of Eq.
6). The coefficients wittk<<I <2k are then clear for sym-
metry reasons.

Using the computer algebra programpLE7 we managed

Now we substitute for the two partial derivatives accordingCal
to Eqg.(30). Solving for the (+1)st coefficient and shifting 4
the index| down by 1, we obtain

-1) . . . .
e (7)=— (I+1)n clm (7)+ C<2nk—4||—5(7') sintf o r to calculate seven perturbative orders of the imaginary-time
2Kl 2Me ~2k+2li+1 fol evolution amplitude, which can be found in REf2].
(2k—1+3)(2k=1+2)fi Chs oppi—1+3(7)
2M ol sinitk=2+2 4, 7 VIl. FREE ENERGY
2k—1+2 C<2r|32k7|+2(7.) N In this section we obtqln perturpatlve results for the par-
i IR tition function by integrating the diagonal elements of our
sin e perturbative expression for the imaginary-time evolution am-
-1 li from the previ ion
1 0(2174)|2k7|73(7) plitude from the previous sections,

— o S ook—o—4
ol sinfx=2~4ur

Z=J’+xdx(xﬁ,8|x0). (48

— o0

_ (2k=2l+2)coshwr Corlak—1+1(7)
| sinifk=2+1 7

(46)

which is the algebraic recursion relation for any nondiagonaFrom the partition function we then compute the free energy
coefficient ¢}, (7) with 0<I<k. (The coefficients with perturbatively,
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insert Eq.(19) together with Eq(8) into Eq.(48) and evalu-
F:_Eln Z (49  ate the integral, and, for the second order, we use, corre-
spondingly, the data from Ref12]. By taking the logarithm

We have to expand the logarithm in order to obtain a perturwe get with Eq.(49) and with the expansion for the loga-
bation expansion for the free ener§yFor the first order we rithm for the free energy to second order

Bw g2ﬁ3
64M*w®°

h 3gh? h
F(2>(,8)— In 2 sinh 'Bw L 29 cotr?
B 4M?@?

54 Bw 36h,Bw cosh’ Bw+ 60 sinhi Bw+21 sinh 21 Bw

ﬁﬁw hBw
sth sth

(50

The higher orders are omitted for the sake of keeping thenonic oscillator from the generating functiond]lj(7)] by
type face clear. WithvapLE we came as high as the fifth differentiating with respect to the curreptr) while setting
perturbative order, which is two orders more than what hag(7) =0 afterwards,

been obtained in Ref14] with Feynman diagrammatic tech-

. 1 (%8
niques. Z=exp{ 3 _f drg
f)o

VIIl. DIAGRAMMATICAL CHECK

4
509 ]znm]j_o. (55

It is possible to check the perturbative results for the free Thus, we get
energy for all temperatures. Namely, we can exp@nih
terms of harmonic expectations in a similar way as for the Z= Z[O][ 1- —f d’TlG(p (71,71)
imaginary-time evolution amplitude in E¢3). To that end,
we need the generating functional g% (hB np 5 )
+ ) dTlf dT2[9G(p) (’Tl,Tl)G(p) (7'2,7'2)
+o 2h 0 0
Zi(m)= | axon i) [, (51 :
o +72GP (11, 7)G P (71,7)G P (72, 72)

which we get from Eqs(7)—(10). It is of the form
g q ( ) ( ) +24G(p)4(7_1,7.2)]+... (56)
Z[j =Z[0 ! Jﬁﬂd fﬁﬁd
Li(]=2[0]exp 572 o Lfy T2 In terms of Feynman diagrams this reads
X GP (1, 75)j(71)j(72)| (52 z= [1 _39 0
where the harmonic partition function reads th (9 cOCO
+7120O00 +24 + o (57)
200)= — 2 (53) 1Y)+
i 1
2sinh—— —ep |5 O-2C0
and
W (72 OO +24 @) ] : (58)
hBw
) h COS"( 7 In- TZ'“’) where we have introduced the symbol
sinh—— 1 O In Z[0 (59

denotes the periodic Green’s function of the harmonic oscillOnce we rewrite the partition functiaf in the form of the
lator. We now obtain the partition functiad of the anhar- cumulant expansion as on the right hand side of(&§), the
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disconnected Feynman diagrams disappBarNow we can M - M w2—02
easily take the logarithm. Following E¢49), we obtain for VX)=5 Q% +g—
the free energy

x2+gx*. (66)

Now we treat the second term as if it was of the order of the

F= 1 [} O- 3g O coupling constany. The result is obtained most simply by
B 12 R substituting for the frequency in the original anharmonic
g 60 oscillator potential(2) according to Kleinert's square-root
+ o0 (72 OO0 +24 @) + } : (60 trick [5]
The above Feynman diagrams are, of course, constructed w—Q\1+gr, (67)

with the help of the same rules as for the imaginary-time

evolution amplitudeg12)—(14), but instead of the Dirichlet Where

Green’s function(10) we have to use the periodic Green’s 02— 02
function (54). We now want to evaluate the four diagrams in r=——w—.
Eq. (60) so that we get a second-order expression for the free 90
energy for finite temperatures. According to E¢s3) and
(59 we get for the zeroth-order contribution

(68)

These substitutions are not the most general ones. The square
root is just a special case for the anharmonic oscillator.

We now apply the trick67) to our first-order series repre-

1 O=m 1 sentation for the free enerdgyfound in Eq.(50). Substituting

2 2sinhh‘$ ’ 6D for the frequencyw according to Eq.(67), expanding for
fixed r up to the first order ing and resubstituting for

whereas the first-order diagram becomes according to Eq(68) we get
_ Bg 5 Afw (62) 1 1 1 3gh? h BQ)
OO_4M2w2 coth 9 F (BaQ)—_Em . ﬁBQ+4MZQZCOIhZ 5
The integration in Eq(62) is trivial, because&sP)(r,7) does 2 sinh—
not depend onr any more according to Eq54). For the )
second order the integrations become more sophisticated, n @(w—z—l)cothh'gﬂ 69)
4 1Q 2
13 coth? WT“’ .
OO0 = So the free energy69) now depends on the trial frequency
32M4w5 sinh” 2£2¢ S . . :
2 Q, which is of no physical relevance. In order to get rid of it,
x(hfw + sinh hfw) . 63 \we have to minimize its effect by employing the principle of
local extrema of~(3,{)) with respect td(},
mp (1)
R So— JF Q
@ 256 M*w sinh* 222 FBA 0. (70)

90
x (sinh 28w + 8 sinh fw + 6/fw) . (64)

For the first ordef(Y)(B,Q) it turns out that there are sev-
eral extrema for eac. As we seek a curv@ () that is

as smooth as possible, the choice is easy—we take the lowest
branch for the others are not boundede Fig. 3. Moreover,

the other branches lead to diverging results.

So all in all we get for the free energ$0) up to second
order in the coupling constagtthe result(50). It shows the
correct low-temperature behavior

ho 3gh?  21g%h3 To second order, we proceed in a similar way and we find
lim F@(B)= —+ , (65)  that there are no extrema at all #6f%)(3,Q). In accordance
B)= 5 * IMZa? 8M w5 : e | or : .
B @ w with the principle of least sensitivity we look for inflection

points instead, i.e., we look for solutions to the equation
which is the ground state energy and can be found, for in-

stance, in Refd1,5]. FFP(B,Q) _o (71)
R

IX. VARIATIONAL PERTURBATION THEORY .
In general, we try to solve the equation
Variational perturbation theory is a method that enables us

to resum divergent Borel-type perturbation series in such a IFN(BQ)
way that they converge even for infinitely large values of the Q" B
perturbative couplin§s,11]. To this end, we add and subtract
a trial harmonic oscillator with trial frequend® to our an-  for the smallest possiblen. Plugging QM (g) into
harmonic oscillator2), FN(B,Q), we finally get back a resummed expression for

0 (72)

036129-8



HIGH-ORDER VARIATIONAL PERTURBATION THEORY . .. PHYSICAL REVIEW E66, 036129 (2002

4 0,680
. F™1.0)
= 0,675+

0,670+

s
—~ 0,665+
S 2f
CG 0,660 -

‘o I 2 008 %3 4 s

B [1/2Ry] N
FIG. 3. Branch of the variational paramef@f?(3) chosen by FIG. 5. The free energy of the anharmonic oscillator for inter-

us. The coupling strength = 1. Other branches not shown in this Mediate couplingy=1 for =1 up to the fifth variational pertur-
figure lead to highly diverging results. Throughout this paper allbative order. The values converge exponentially towards the nu-
results are presented in natural urits ky=1 and, additionally, we ~ Merical valueF () (1)=0.6571, which is shown as a straight line.
have setM = w=1. The dimension of the free energy in natural units is 2 Ry.

the physical quantityc(8). The results for the first three F{)(1.0)=0.6571 turns out to lie within the interval ob-
orders are given in Fig. 4. In order to check our results, weained by fitting the five perturbative orders of the free en-
have to compare them to the numerically evaluated free erergy with ORIGIN, as shown in Fig. 5. This interval |§.657,
ergy Fﬁ’[‘,?n(,B) which is discussed in Sec. XI. 0.659, and clearly, the variational perturbative results con-

verge exponentially.

X. HIGHER ORDERS
Xl. CHECKING OUR RESULTS

We now evaluate the convergence behavior of the varia-
tional perturbative results for the free enegy"(B) up to
the fifth order. However, in order to reduce the computational o
cost we restrict ourselves to a certain value of the inverse 7= Z e BEn (73)
temperatures. Results are shown in Fig. 5. For odd varia- n=0
tional perturbation orders we optimized the free energy ac-
cording to Eq(70), i.e., we determine€l by setting the first where theE, are the energy eigenvalues. Let us define the
derivative of F(N)(B) with respect toQ) to zero. For even Nnumerical approximants
orders we had to go for inflection points, instead, so we had

The spectral representation of the partition function reads

N
to solve Eq.(71). N) _
It turns out that odd and even orders oscillate about an Znum= nzo e e (74)
exponential best fit curve. Fg8=1, the numerical result
and
1,00
first order \ 1 N
=075} \ Fum=— g Ziu (79
&
:0,50- respectively. One possibility to obtain numerical results for
Q the eigenvalueg,, is provided by the so-called “shooting
k. 025} method.” We integrate the Schilimger equation numerically
second and third order for the potential2) and for a particular value of the coupling
and numerical results strengthg. If the energyE that we plug into the program
0,00 :
0 2 does not coincide with one of the energy eigenvalgsthe

1
B [1/2Ry] solution to the Schdinger equation explodes already for

FIG. 4. Free energy of the anharmonic oscillator up to thirdrelaﬂve'y §mal| values of the coordinatelf the energy ei-
genvalue is close to the exact answer, we haléx)| <o

order for intermediate coupling=1. The solid line represents the Iso for | | of Thi thod vields th |
numerical resulFﬁ?}m(ﬁ), obtained by approximating the partition also for larger values ot. 1his method yi€lds the unnormal-

function (74) with the help of the first ten energy eigenvalues. TheIzed elgen_functlon$the wave functlons which still haye to
other lines are variational perturbative results. The dashed Iinpe normalizegland the energy .elggnv:.ilues to very high ac-
shows the first order, the dotted line shows the second order, and tf#/racy (see Table )l Renormalization is necessary, for the
dot-dashed line represents the third order. Note that the second af@MPputer algebra program needs an initial valu®), which
third orders are hardly distinguishable from the numerical resultsWe Set to 1. Substituting the first ten numeric energy eigen-
Higher orders for a special value of the inverse tempergucan  Values into Eq(74) and evaluating Eq(75) up toN=9, we

be found in Fig. 5. obtain a functiorF (™) (B). It converges rapidly for low tem-
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TABLE I. The first ten energy eigenvalueg,,, of the anhar- 1,0 -
monic oscillator for intermediate coupling=1. They were ob- _ numerical resfl/lt,s o
Fa_ir_led by ny_merically integrating the Scdimger equation with the é» 05 ~
initial condition thatWw(0)=1, ¥'(0)=0 for evenn, and ¥ (0) N
=0 and¥’(0)=1 for oddn, and of cours¢¥ (x)| < for largex. = ool
The energy eigenvalues are given in units of 2 Ry. N variational
R free energy
n E, n E, 05¢ classical
free energy
0 0.8037701932 5 14.203 064 494 1.0
1 2.737889 1484 6 17.633934 116 "0 1 2 3
2 51792814619 7 21.236 268 598 B [1/2Ry]
3 7.942380454 4 8 24.994 705012 FIG. 6. The numerical free energy® (B), the first-order
4 10.963 538 555 9 28.896 941521

variational perturbative results for the free eneffy(8), and the

classical free energl4(8)= —(In Z.)/ B, from top to bottom. For

small values of the inverse temperaty#ehe classical calculations

peratures, corresponding to high valuesgofFor high tem-  coincide with the other results. Lower temperatures, corresponding

peratures more terms should be taken into account. to higher values of3, reveal differences between the classical ap-
Alternatively, one can also use classical results as a higheroach(77) and quantum statistics.

temperature cross check: High temperatures correspond to

classical statistical distributions such that we can evaluate

the classical partition function according to energy have been evaluated up to third ordet]; here we
1 dx obtained the fifth-order result.
Zc|=f — exd — BV(X)], (76) For th_e free energy the convergence of th_e variational
—w Ah perturbation theory was found to be exponential. The fact

that the principle of least sensitivifyi3] produces extrema
with the potential2) and\ = J27h2IM kgT. This integral  for the odd variational orders and inflection points for even

reduces to orders is reflected in the respective convergence behaviors:
- 4 Odd and even orders can best be fitted separately by expo-
. _ 1 Ma?2g ex BM“w K BM*w nentials as emphasized in REf1]. Thus, we obtained inter-
2N 9 32 va 329 ) vals of convergence for certain values of the free energy,

(77 which always turned out to contain the exact numerical result

) » _ . when taking into account the statistical errors associated with

whereKy/,(z) is a modified Bessel function. The classical e poundaries of the intervals. For the free energy, the nu-

partition function(77) can be evaluated for high tempera- nerical results were obtained using its spectral representa-
tures, which corresponds to small valuesgofConsequently, {jon reverting on the first ten energy eigenvalues obtained
when we test our variational perturbative results, we comyith the shooting method, sketched in Sec. XI. Finally, we
pare them to the classical free energy for low valueg3of  note that our high-order perturbative results for the anhar-
namely,8<z. And for high values of3 we use the numeri- - yonic imaginary-time evolution amplitude are useful for cal-

cal apprOX|mat|_onF§w)m(B), for Comparlsolr(see Fig. 6. culating other thermodynamic quantities as the correlation
In natural unitsi =kg=1 a value of3=3 corresponds to  function or the ground state wave functi¢®,15,16. Fur-
a physical temperature df=1.26<10° K. thermore, it remains to compare these perturbative results

with the semiclassical approximatigm7].
XII. CONCLUSION AND OUTLOOK

The recursive technique that has been developed through-
out Secs. IV-VI definitely out classes all diagrammatical
perturbative calculations. Using the conventional evaluation The authors wish to thank Professor Kleinert for fruitful
of Feynman diagrams, the partition function and the freadiscussions on the variational perturbation theory.
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