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High-order variational perturbation theory for the free energy

Florian Weissbach,* Axel Pelster,† and Bodo Hamprecht‡

Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, 14195 Berlin, Germany
~Received 6 March 2002; published 25 September 2002!

In this paper we introduce a generalization to the algebraic Bender-Wu recursion relation for the eigenvalues
and the eigenfunctions of the anharmonic oscillator. We extend this well known formalism to the time-
dependent quantum statistical Schro¨dinger equation, thus obtaining the imaginary-time evolution amplitude by
solving a recursive set of ordinary differential equations. This approach enables us to evaluate global and local
quantum statistical quantities of the anharmonic oscillator to much higher orders than by evaluating Feynman
diagrams. We probe our perturbative results by deriving a perturbative expression for the free energy, which is
then subject to variational perturbation theory as developed by Kleinert, yielding convergent results for the free
energy for all values of the coupling strength.
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I. INTRODUCTION

Most physical problems can only be solved by appro
mation methods. One of them is perturbation theory t
yields weak-coupling expansions. Unfortunately, they of
do not converge.

The ground state energy of the anharmonic oscillato
the simplest example where this phenomenon can be stu
Algebraic recursion relations as proposed by Bender and
@1# yield perturbation series for the eigenvalues~energies!
and eigenfunctions~wave functions! of the time-independen
Schrödinger equation up to arbitrarily high orders. In Ref.@2#
the calculation was extended to 250th order. The Bender
recursion relation yields a power series for the anharmo
part of the wave function both in the coupling strengthg and
in the coordinatex. The power series inx can be cut off
naturally by comparing the recursive results with those
tained from evaluating Feynman diagrams. The result
weak-coupling series for the ground state energy does
converge for any value of the coupling strength. This pa
deals with both problems: Obtaining high-order perturbat
expressions and making them converge for all values of
coupling strength. This paper is organized as follows.

In Sec. II we perturbatively evaluate the path integral re
resentation for the imaginary-time evolution amplitude of t
anharmonic oscillator by means of a generalized Wic
theorem@3,4#. In Sec. III we represent the first-order resu
diagrammatically. Doing so, we demonstrate that the a
braic computational cost is very high for the diagramma
approach. We also obtain a cross check for the results
are derived from a differential recursion relation in Sec.
In order to cut down on the algebraic computational cost
introduce a strategy to exploit the symmetry property of
imaginary-time evolution amplitude in Sec. V, thus layin
the foundation for our high-order results. In Sec. VI we co
bine the resulting algebraic recursion relation with the ori
nal differential recursion relation, thus generalizing t
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Bender-Wu approach@1#. From our perturbative results fo
the imaginary-time evolution amplitude we then gain a p
turbation expression for the free energy of the anharmo
oscillator in Sec. VII, which we check again diagramma
cally in Sec. VIII. The perturbative results are then r
summed in Sec. IX by means of variational perturbati
theory @5# for intermediate couplingg51 for which the
usual weak-coupling series would diverge. This theory i
systematic extension of a simple variational approach, fi
developed by Feynman and Kleinert in the path integral f
malism. Feynman introduced the path integral formalism a
quantization regulation, that represents the operator pro
ties of quantum physics by fluctuations of the dynami
variables@6,7#. By extending analytically real time to imagi
nary time, also quantum statistical quantities can be obtai
by summing over quantum mechanical and thermal fluct
tions with the help of path integrals@7,8#. In order to evalu-
ate the path integral for the free energy approximately, Fe
man and Kleinert developed a variational method in 19
@9#. It replaces the relevant system by the exactly solva
harmonic oscillator whose frequency becomes a variatio
parameter that has to be optimized. Starting with Ref.@10#,
this method has been systematically extended by Kleiner
higher orders@5,11#. It is now known as the variational per
turbation theory and yields results for all temperatures a
all coupling strengths.

In Sec. X we extend this procedure to higher orders of
free energy and cross check the results in Sec. XI.

II. PATH INTEGRAL REPRESENTATION

The path integral representation for the imaginary-tim
evolution amplitude of a particle of massM moving in a
one-dimensional potentialV(x) reads@5#

~xb\buxa0!5E
x~0!5xa

x~\b!5xbDx expH 2
1

\ E
0

\b

dt

3FM

2
ẋ2~t!1V„x~t!…G J . ~1!

For the anharmonic oscillator potential
©2002 The American Physical Society29-1
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V~x!5
M

2
v2x21gx4, ~2!

the imaginary-time evolution amplitude~1! can be expanded
in powers of the coupling constantg. Thus we obtain the
perturbation series

~xb\buxa0!5~xb\buxa0!vF12
g

\ E
0

\b

dt1^x
4~t1!&v1¯G ,

~3!

where we have introduced the harmonic imaginary-time e
lution amplitude

~xb\buxa0!v[E
x~0!5xa

x~\b!5xbDx expH 2
1

\ E
0

\b

dt

3FM

2
ẋ2~t!1

M

2
v2x2~t!G J , ~4!

and the harmonic path expectation value for an arbitr
functionalF@x#,

^F@x#&v[
1

~xb\buxa0!v
E

x~0!5xa

x~\b!5xbDxF@x#

3expH 2
1

\ E
0

\b

dtFM

2
ẋ2~t!1

M

2
v2x2~t!G J .

~5!

The latter is evaluated with the help of the generating fu
tional for the harmonic oscillator, whose path integral rep
sentation reads

~xb\buxa0!v@ j #5E
x~0!5xa

x~\b!5xbDx expH 2
1

\ E
0

\b

dt FM

2
ẋ2~t!

1
M

2
v2x2~t!2 j ~t!x~t!G J , ~6!

leading to@5#

~xb\buxa0!v@ j #5~xb\buxa0!v

3expF 1

\ E
0

\b

dt1xcl~t1! j ~t1!

1
1

2\2 E
0

\b

dt1E
0

\b

dt2

3G~D !~t1 ,t2! j ~t1! j ~t2!G , ~7!

with the harmonic imaginary-time evolution amplitude

~xb\buxa0!v5S Mv

2p\ sinh\bv D 1/2

expH 2
Mv

2\ sinh\bv

3@~xa
21xb

2!cosh\bv22xaxb#J . ~8!
03612
-

y

-
-

In Eq. ~7! we have introduced the classical path

xcl~t![
xa sinh~\b2t!v1xb sinhvt

sinh\bv
~9!

and the Dirichlet Green’s function

G~D !~t1 ,t2![
\

Mv

1

sinh\bv

3@u~t12t2!sinh~\b2t1!v sinhvt2

1u~t22t1!sinh~\b2t2!v sinhvt1#.

~10!

We follow Refs.@3,4# and evaluate harmonic path expec
tion values of polynomials inx arising from the generating
functional ~7! according to Wick’s theorem. Let us illustrat
the procedure to reduce the power of polynomials by
example of the harmonic path expectation va
^xn(t1)xm(t2)&v .

~i! Contractingx(t1) with xn21(t1) andxm(t2) leads to
Green’s functionsG(D)(t1 ,t1) andG(D)(t1 ,t2) with multi-
plicity n21 andm, respectively. The rest of the polynomi
remains within the harmonic path expectation value, lead
to ^xn22(t1)xm(t2)&v and ^xn21(t1)xm21(t2)&v .

~ii ! If n.1, extract onex(t1) from the path expectation
value givingxcl(t1) multiplied by ^xn21(t1)xm(t2)&v .

~iii ! Add the terms from~i! and ~ii !.
~iv! Repeat the previous steps until only products of p

expectation valueŝx(t1)&v5xcl(t1) remain.

With the help of this procedure, we obtain to first order

^x4~t1!&v5xcl
4 ~t1!16xcl

2 ~t1!G~D !~t1 ,t1!13G~D !2
~t1 ,t1!.

~11!

III. FEYNMAN DIAGRAMS

These contractions can be illustrated by Feynman
grams with the following rules: A vertex represents the in
gration overt,

~12!

a line denotes the Dirichlet Green’s function

~13!

and a cross or a ‘‘current’’ pictures a classical path

~14!

Inserting the harmonic path expectation value~11! into the
perturbation expansion~3! leads in first order to the diagram

~15!
9-2
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We now evaluate the first-order Feynman diagrams in Eq.~15! for finite temperatures and arbitraryxa , xb . Thus we will get
a first-order result for the imaginary-time evolution amplitude in Eq.~3!. The first diagram leads to

~16!

and the second diagram reduces to

~17!

whereas the last diagram turns out to be

~18!

So, all in all, we get the following first-order result for the imaginary-time evolution amplitude:

~xb\buxa0!5~xb\buxa0!vS 12
g

\ H \2

M2v3 sinh2 \bv
@2 9

16 sinh 2\bv1 3
4 \bv1 3

8 \bv cosh 2\bv#

1
\

Mv2 sinh3 \bv
@~xa

21xb
2!~ 3

16 sinh 3\bv1 27
16 sinh\bv2 9

4 \bv cosh\bv!1xaxb~2 9
4 sinh 2\bv

13\bv1 3
2 \bv cosh 2\bv!#1

1

v sinh4 \bv
@~xa

41xb
4!~ 1

32 sinh 4\bv2 1
4 sinh 2\bv1 3

8 \bv!

1~xa
3xb1xaxb

3!~ 1
8 sinh 3\bv1 9

8 sinh\bv2 3
2 \bv cosh\bv!1xa

2xb
2~2 9

8 sinh 2\bv1 3
2 \bv

1 3
4 \bv cosh 2\bv!#J 1¯ D . ~19!
m

li-

-

ro
to
n

li-
The imaginary-time evolution amplitude thus has the ti
reversal behavior

~xb\buxa0!5~xa\buxb0!* , ~20!

while it is known that the imaginary-time evolution amp
tude is real for one-dimensional problems.

IV. PARTIAL DIFFERENTIAL EQUATION

Consider the Schro¨dinger equation for the real-time evo
lution amplitude

i\
]

]t
~xbtuxa0!52

\2

2M

]2

]xb
2 ~xbtuxa0!1V~xb!~xbtuxa0!.

~21!
03612
eIn order to get a corresponding quantum statistical Sch¨-
dinger equation, we now have to change from real time
imaginary time, i.e., we have to perform the Wick rotatio
t→2 i t. Thus the Schro¨dinger equation~21! becomes

2\
]

]t
~xbtuxa0!52

\2

2M

]2

]xb
2 ~xbtuxa0!1V~xb!~xbtuxa0!.

~22!

For both the real and the imaginary-time evolution amp
tude, the initial condition reads

~xb0uxa0!5d~xb2xa!. ~23!

Substituting the anharmonic oscillator potential~2! into the
Schrödinger equation~22!, we finally get
9-3
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H 2\
]

]t
1

\2

2M

]2

]xb
22

M

2
v2xb

22gxb
4J ~xbtuxa0!50.

~24!

Making the ansatz

~xbtuxa0!5~xbtuxa0!v A~xb ,xa ,t!, ~25!

where (xbtuxa0)v is the harmonic imaginary-time evolutio
amplitude~8!, we conclude from Eq.~24! a partial differen-
tial equation forA(xb ,xa ,t),

H ]

]t
2

\

2M

]2

]xb
2 1v

xb coshvt2xa

sinhvt

]

]xb
1

g

\
xb

4J
3A~xb ,xa ,t!50. ~26!

We now choose our ansatz forA(xb ,xa ,t) by introducing
three expansions ing, xa , andxb , respectively. Also we take
out the factor sinh2l vt, such that the ordinary differentia
equations for the expansion coefficients become as simp
possible,

A~xb ,xa ,t!5 (
n50

`

(
k50

2n

(
l 50

2k

gn
c2ku l

~n! ~t !

sinhl vt
xa

2k2 lxb
l . ~27!

In order to obtain the unperturbed resultA(xb ,xa ,t)51 for
g50 we needc0u0

(0)(t)51. The superscriptn in Eq. ~27! de-
notes the perturbative order, whereas 2k counts the~even!
powers of the various productsxa

i xb
j . The summations ove

the coordinatesxa , xb can be truncated atk52n, because
we learn from Feynman diagrammatic considerations that
diagram with the most currentsx in the nth order looks like

~28!

Inserting the ansatz~27! into the Schro¨dinger equation~26!
and arranging the indices in such a way that each term
proportional toxa

2k2 lxb
l , we get for the different powers ofg

and forn.0,

(
k50

2n

(
l 50

2k xa
2k2 lxb

l

sinhl vt

]c2ku l
~n! ~t !

]t

2
\

2M (
k521

2n21

(
l 522

2k22

~ l 12!~ l 11!
c2k12u l 12

~n! ~t !

sinhl 12 vt
xa

2k2 lxb
l

2v(
k50

2n

(
l 521

2k21

~ l 11!
c2ku l 11

~n! ~t !

sinhl 12 vt
xa

2k2 lxb
l

1
1

\ (
k52

2n

(
l 54

2k14 c2k24u l 24
~n21! ~t !

sinhl 24 vt
xa

2k2 lxb
l 50. ~29!

Thus the sums overk and overl collapse and we determin
the master equation for our coefficientsc2ku l

(n) (t),
03612
as

e

is

]c2ku l
~n! ~t !

]t
5~ l 12!~ l 11!

\

2M

c2k12u l 12
~n! ~t !

sinh2 vt

1~ l 11!v
c2ku l 11

~n! ~t !

sinh2 vt

2
1

\
c2k24u l 24

~n21! ~t !sinh4 vt, ~30!

which is solved by

c2ku l
~n! ~t !5~ l 12!~ l 11!

\

2M E dt
c2k12u l 12

~n! ~t !

sinh2 vt

1~ l 11!vE dt
c2ku l 11

~n! ~t !

sinh2 vt

2
1

\ E dtc2k24u l 24
~n21! ~t ! sinh4 vt1d2ku l

~n! . ~31!

Here thed2ku l
(n) denote the integration constants that are fix

by applying the initial condition

lim
t→0

U c2ku l
~n! ~t !

sinhl vt
U,`. ~32!

However, the above master equation~30! is not valid for all
k and l. Therefore, we now introduce a set of empirical rul
telling us which of the coefficientsc2ku l

(n) (t) have to be
dropped once we write down~31! for any ordern: ~i! drop all
terms containing ac2ku l

(n) (t) where 2k.4n; ~ii ! drop all terms
containing ac2ku l

(n) (t) with l .2k; and ~iii ! neglect all terms
containing ac2ku l

(n) (t) with any negative indicesk and l.
To convince the reader that Eq.~31! together with this

procedure leads to the correct results we now reobtain
first-order result from Eq.~19!. To that end we setn51, such
that k runs from 0 to 2 andl from 0 to 4. Fixingk52 and
counting down froml 54 to l 50,
we get

c4u4
~1!~t !52

1

\ E dtc0u0
~0!~t !sinh4 vt1d4u4

~1!

5
1

\v
~ 1

32 sinh 4vt2 1
4 sinh 2vt1 3

8 sinhvt!,

~33!

c4u3
~1!~t !54vE dt

c4u4
~1!~t !

sinh2 vt
1d4u3

~1!

5
1

\v sinhvt
~ 1

8 sinh 3vt1 9
8 sinhvt2 3

2 coshvt!,

~34!
9-4
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c4u2
~1!~t !53vE dt

c4u3
~1!~t !

sinh2 vt
1d4u2

~1!

5
1

\v sinh2 vt
~2 9

8 sinh 2vt1 3
2 vt

1 3
4 vt cosh 2vt!, ~35!

c4u1
~1!~t !52vE dt

c4u2
~1!~t !

sinh2 vt
1d4u1

~1!

5
1

\v sinh3 vt
~ 1

8 sinh 3vt1 9
8 sinhvt

2 3
2 vt coshvt!, ~36!

c4u0
~1!~t !5vE dt

c4u1
~1!~t !

sinh2 vt
1d4u0

~1!

5
1

\v sinh4 vt
~ 1

32 sinh 4vt2 1
4 sinh 2vt

1 3
8 sinhvt!. ~37!

Correspondingly, fork51, we obtain

c2u2
~1!~t !5

6\

M E dt
c4u4

~1!~t !

sinh2 vt
1d2u2

~1!

5
1

Mv2 sinhvt
~ 3

16 sinh 3vt

1 27
16 sinhvt2 9

4 vt coshvt!, ~38!

c2u1
~1!~t !5

3\

M E dt
c4u3

~1!~t !

sinh2 vt
12vE dt

c2u2
~1!~t !

sinh2~t!
1d2u1

~1!

5
1

Mv2 sinh2 vt
~2 9

4 sinh 2vt

13vt1 3
2 vt cosh 2vt!, ~39!

c2u0
~1!~t !5

\

M E dt
c4u2

~1!~t !

sinh2 vt
1vE dt

c2u1
~1!~t !

sinh2~t!
1d2u0

~1!

5
1

\v2 sinh3 vt
~ 3

16 sinh 3vt

1 27
16 sinhvt2 9

4 vt coshvt!. ~40!

Finally for k50 we get the equation

c0u0
~1!~t !5

\

M E dt
c2u2

~1!~t !

sinh2 vt
1d0u0

~1!

5
\

M2v3 sinh2 vt
~2 9

16 sinh 2vt

1 3
4 vt1 3

8 vt cosh 2vt!. ~41!
03612
The path of recursion, which follows from this procedure,
shown in Fig. 1.

V. EXPLOITING THE SYMMETRIES

As seen above, we already have to solve nine ordin
differential equations for the first-order imaginary-time ev
lution amplitude. For any ordern, the numberp of integrals
to solve is

p5 (
j 51

2n11

~2 j 21!54n214n11. ~42!

Due to the time reversal behavior~20!, the coefficients
c2ku l

(n) (t) show a symmetry, namely,

c2ku l
~n! ~t !

sinhvt
5

c2ku2k2 l
~n! ~t !

sinh2k2 l vt
. ~43!

Exploiting the symmetry~43!, we can cut down the numbe
~42! considerably. At first sight, it is reduced to

p85 (
j 51

2n11

j 52n213n11, ~44!

so there are only six integrals left for the first order. But w
can go even further. Employing these symmetries we
eventually change almost all recursivedifferential equations
into purely algebraic ones leaving onlyp95(2n11) inte-
grations. So, for the first order, we are left with three in
grations only, namely, Eqs.~33!, ~38!, and ~41!. The coeffi-
cients c4u4

(1)(t), c2u2
(1)(t), and c0u0

(1)(t) are integrated
recursively. The other coefficients can then be obtained a
braically: Once we havec4u4

(1)(t), we also knowc4u0
(1)(t) be-

cause of the symmetry~43!. Comparing Eq.~31! for k52,
l 54 andk52, l 50 we then obtain an algebraic equation f
c4u1

(1)(t). The knowledge ofc4u1
(1)(t) gives usc4u3

(1)(t) because
of the symmetry~43! and by comparing Eq.~31! this time
for k52, l 53 on the one hand andk52, l 51 on the other
hand we are left with an algebraic equation forc4u2

(1)(t). Thus

FIG. 1. This diagram depicts the path of recursion forn51. We
start in the top right hand corner, which is to be identified with t
coefficientc4u4

(1) and follow the arrows until reaching the bottom le
hand corner with the coefficientc0u0

(1) .
9-5
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we get all the coefficients fork52 only by solving one dif-
ferential equation, namely, the one forc4u4

(1)(t). For k51 the
procedure is similar,k50 only generates one coefficien
anyway, namely,c0u0

(1)(t), which still has to be solved by
evaluating one integral. The new path of recursion is sho
in Fig. 2. So finally three out of the nine first-order coef
cients are obtained by integration, three more are clear
symmetry reasons, and three come from an algebraic re
sion.

We now generalize the algebraic part of our recursi
Consider again the symmetry property~43!. Differentiation
on both sides yields

]c2ku l
~n! ~t !

]t
5

1

sinh2k22l vt

]c2ku2k2 l
~n! ~t !

]t

22~k2 l !v coshvt
c2ku2k2 l

~n! ~t !

sinh2k22l 11 vt
. ~45!

Now we substitute for the two partial derivatives accordi
to Eq. ~30!. Solving for the (l 11)st coefficient and shifting
the indexl down by 1, we obtain

c2ku l
~n! ~t !52

~ l 11!\

2Mv
c2k12u l 11

~n! ~t !1
c2k24u l 25

~n21! ~t !

\v l
sinh6 vt

1
~2k2 l 13!~2k2 l 12!\

2Mv l

c2k12u2k2 l 13
~n! ~t !

sinh2k22l 12 vt

1
2k2 l 12

l

c2ku2k2 l 12
~n! ~t !

sinh2k22l 12 vt

2
1

\v l

c2k24u2k2 l 23
~n21! ~t !

sinh2k22l 24 vt

2
~2k22l 12!coshvt

l

c2ku2k2 l 11
~n! ~t !

sinh2k22l 11 vt
, ~46!

which is the algebraic recursion relation for any nondiago
coefficient c2ku l

(n) (t) with 0, l<k. ~The coefficients with

FIG. 2. This diagram shows which of the first-order coefficie
c2ku l

(1) (t) have to be integrated~bold! and which ones can be ob
tained by employing symmetry and algebraic recursions~light!.
03612
n

or
ur-

.

l

k, l ,2k are then clear for symmetry reasons.! The diagonal
coefficientsc2ku2k

(n) (t) are yet to be integrated.

VI. COMBINED DIFFERENTIAL AND ALGEBRAIC
EQUATION

We now combine the differential recursion with the alg
braic one. As only the diagonal coefficients have to be eva
ated by integrating the differential recursive equation, we c
even further simplify the solution~31! to our master equation
~30!. We only need it for the diagonal coefficients, for whic
l 1152k11 is always greater than 2k. And according to
our index rule~ii !, coefficients of the shapec2ku2k11

(n) have to
be neglected. We get

c2ku2k
~n! ~t !5~2k12!~2k11!

\

2M E dt
c2k12u2k12

~n! ~t !

sinh2 vt

2
1

\ E dtc2k24u2k24
~n21! ~t !sinh4 vt1d2ku2k

~n! .

~47!

Index rules~i! and~iii ! still have to be applied,k runs from 0
to 2n.

Let us quickly summarize the combined differential a
algebraic recursion relation considering the first order as
example. Figure 2 shows all first-order coefficients for t
imaginary-time evolution amplitude. Each coefficient is re
resented by a little circle. Now the coefficients on the dia
onal line 2k5 l have to be obtained by referring to Eq.~47!
together with rules~i! and~iii !. These two rules tell us which
of the coefficients either from the same ordern or from the
previous ordern21 have to be integrated and which on
can be put to zero.

Once we have the diagonal coefficientsc2ku2k
(n) (t), we can

calculate the off-diagonal ones withl<k with the help of Eq.
~46!. The coefficients withk, l ,2k are then clear for sym-
metry reasons.

Using the computer algebra programMAPLE7 we managed
to calculate seven perturbative orders of the imaginary-t
evolution amplitude, which can be found in Ref.@12#.

VII. FREE ENERGY

In this section we obtain perturbative results for the p
tition function by integrating the diagonal elements of o
perturbative expression for the imaginary-time evolution a
plitude from the previous sections,

Z5E
2`

1`

dx~x\bux0!. ~48!

From the partition function we then compute the free ene
perturbatively,
9-6
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F52
1

b
ln Z. ~49!

We have to expand the logarithm in order to obtain a per
bation expansion for the free energyF. For the first order we
th
h
ha
-

re

th

ci

03612
r-

insert Eq.~19! together with Eq.~8! into Eq.~48! and evalu-
ate the integral, and, for the second order, we use, co
spondingly, the data from Ref.@12#. By taking the logarithm
we get with Eq.~49! and with the expansion for the loga
rithm for the free energy to second order
F ~2!~b!5
1

b
ln 2 sinh

\bv

2
1

3g\2

4M2v2 coth2
\bv

2
2

g2\3

64M4v5

3S 54\bv

sinh
\bv

2

1
36\bv cosh\bv160 sinh\bv121 sinh 2\bv

sinh
\bv

2
D . ~50!
The higher orders are omitted for the sake of keeping
type face clear. WithMAPLE we came as high as the fift
perturbative order, which is two orders more than what
been obtained in Ref.@14# with Feynman diagrammatic tech
niques.

VIII. DIAGRAMMATICAL CHECK

It is possible to check the perturbative results for the f
energy for all temperatures. Namely, we can expandZ in
terms of harmonic expectations in a similar way as for
imaginary-time evolution amplitude in Eq.~3!. To that end,
we need the generating functional

Z@ j ~t!#5E
2`

1`

dx~x\bux0!v@ j #, ~51!

which we get from Eqs.~7!–~10!. It is of the form

Z@ j ~t!#5Z@0#expF 1

2\2 E
0

\b

dt1E
0

\b

dt2

3G~p!~t1 ,t2! j ~t1! j ~t2!G , ~52!

where the harmonic partition function reads

Z@0#5
1

2 sinh
\bv

2

~53!

and

G~p!~t1 ,t2!5
\

2Mv

coshS \bv

2
2ut12t2uv D

sinh
\bv

2

~54!

denotes the periodic Green’s function of the harmonic os
lator. We now obtain the partition functionZ of the anhar-
e

s

e

e

l-

monic oscillator from the generating functionalZ@ j (t)# by
differentiating with respect to the currentj (t) while setting
j (t)50 afterwards,

Z5expH 2
1

\ E
0

\b

dt gF \d

d j ~t!G
4J Z@ j ~t!#U

j 50

. ~55!

Thus, we get

Z5Z@0#H 12
3g

\ E
0

\b

dt1G~p!2
~t1 ,t1!

1
g2

2\2 E
0

\b

dt1E
0

\b

dt2@9G~p!2
~t1 ,t1!G~p!2

~t2 ,t2!

172G~p!~t1 ,t1!G~p!2
~t1 ,t2!G~p!~t2 ,t2!

124G~p!4
~t1 ,t2!#1¯J . ~56!

In terms of Feynman diagrams this reads

~57!

~58!

where we have introduced the symbol

~59!

Once we rewrite the partition functionZ in the form of the
cumulant expansion as on the right hand side of Eq.~58!, the
9-7
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disconnected Feynman diagrams disappear@5#. Now we can
easily take the logarithm. Following Eq.~49!, we obtain for
the free energy

~60!

The above Feynman diagrams are, of course, constru
with the help of the same rules as for the imaginary-ti
evolution amplitudes~12!–~14!, but instead of the Dirichlet
Green’s function~10! we have to use the periodic Green
function ~54!. We now want to evaluate the four diagrams
Eq. ~60! so that we get a second-order expression for the
energy for finite temperatures. According to Eqs.~53! and
~59! we get for the zeroth-order contribution

~61!

whereas the first-order diagram becomes

~62!

The integration in Eq.~62! is trivial, becauseG(p)(t,t) does
not depend ont any more according to Eq.~54!. For the
second order the integrations become more sophisticate

~63!

The other contribution to the second order yields

~64!

So all in all we get for the free energy~60! up to second
order in the coupling constantg the result~50!. It shows the
correct low-temperature behavior

lim
b→`

F ~2!~b!5
\v

2
1

3g\2

4M2v22
21g2\3

8M4v5 , ~65!

which is the ground state energy and can be found, for
stance, in Refs.@1,5#.

IX. VARIATIONAL PERTURBATION THEORY

Variational perturbation theory is a method that enables
to resum divergent Borel-type perturbation series in suc
way that they converge even for infinitely large values of
perturbative coupling@5,11#. To this end, we add and subtra
a trial harmonic oscillator with trial frequencyV to our an-
harmonic oscillator~2!,
03612
ed
e

e

-

s
a

e

V~x!5
M

2
V2x21g

M

2

v22V2

g
x21gx4. ~66!

Now we treat the second term as if it was of the order of
coupling constantg. The result is obtained most simply b
substituting for the frequencyv in the original anharmonic
oscillator potential~2! according to Kleinert’s square-roo
trick @5#

v→VA11gr, ~67!

where

r[
v22V2

gV2 . ~68!

These substitutions are not the most general ones. The sq
root is just a special case for the anharmonic oscillator.
We now apply the trick~67! to our first-order series repre
sentation for the free energyF found in Eq.~50!. Substituting
for the frequencyv according to Eq.~67!, expanding for
fixed r up to the first order ing and resubstituting forr
according to Eq.~68! we get

F ~1!~b,V!52
1

b
ln

1

2 sinh
\bV

2

1
3g\2

4M2V2 coth2
\bV

2

1
\V

4 S v2

V221D coth
\bV

2
. ~69!

So the free energy~69! now depends on the trial frequenc
V, which is of no physical relevance. In order to get rid of
we have to minimize its effect by employing the principle
least sensitivity@13#. This principle suggests searching fo
local extrema ofF(b,V) with respect toV,

]F ~1!~b,V!

]V
50. ~70!

For the first orderF (1)(b,V) it turns out that there are sev
eral extrema for eachb. As we seek a curveV (1)(b) that is
as smooth as possible, the choice is easy—we take the lo
branch for the others are not bounded~see Fig. 3!. Moreover,
the other branches lead to diverging results.

To second order, we proceed in a similar way and we fi
that there are no extrema at all forF (2)(b,V). In accordance
with the principle of least sensitivity we look for inflectio
points instead, i.e., we look for solutions to the equation

]2F ~2!~b,V!

]V2 50. ~71!

In general, we try to solve the equation

]nF ~N!~b,V!

]Vn 50 ~72!

for the smallest possiblen. Plugging V (N)(b) into
F (N)(b,V), we finally get back a resummed expression
9-8
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the physical quantityF(b). The results for the first three
orders are given in Fig. 4. In order to check our results,
have to compare them to the numerically evaluated free
ergy Fnum

(N) (b) which is discussed in Sec. XI.

X. HIGHER ORDERS

We now evaluate the convergence behavior of the va
tional perturbative results for the free energyF (N)(b) up to
the fifth order. However, in order to reduce the computatio
cost we restrict ourselves to a certain value of the inve
temperatureb. Results are shown in Fig. 5. For odd vari
tional perturbation orders we optimized the free energy
cording to Eq.~70!, i.e., we determinedV by setting the first
derivative of F (N)(b) with respect toV to zero. For even
orders we had to go for inflection points, instead, so we
to solve Eq.~71!.

It turns out that odd and even orders oscillate about
exponential best fit curve. Forb51, the numerical resul

FIG. 3. Branch of the variational parameterV (1)(b) chosen by
us. The coupling strength isg51. Other branches not shown in th
figure lead to highly diverging results. Throughout this paper
results are presented in natural units\5kB[1 and, additionally, we
have setM5v[1.

FIG. 4. Free energy of the anharmonic oscillator up to th
order for intermediate couplingg51. The solid line represents th
numerical resultFnum

(9) (b), obtained by approximating the partitio
function ~74! with the help of the first ten energy eigenvalues. T
other lines are variational perturbative results. The dashed
shows the first order, the dotted line shows the second order, an
dot-dashed line represents the third order. Note that the second
third orders are hardly distinguishable from the numerical resu
Higher orders for a special value of the inverse temperatureb can
be found in Fig. 5.
03612
e
n-

-

l
e

-

d

n

Fnum
(9) (1.0)50.6571 turns out to lie within the interval ob

tained by fitting the five perturbative orders of the free e
ergy withORIGIN, as shown in Fig. 5. This interval is@0.657,
0.659#, and clearly, the variational perturbative results co
verge exponentially.

XI. CHECKING OUR RESULTS

The spectral representation of the partition function re

Z5 (
n50

`

e2bEn, ~73!

where theEn are the energy eigenvalues. Let us define
numerical approximants

Znum
~N! 5 (

n50

N

e2bEn ~74!

and

Fnum
~N! 52

1

b
ln Znum

~N! , ~75!

respectively. One possibility to obtain numerical results
the eigenvaluesEn is provided by the so-called ‘‘shooting
method.’’ We integrate the Schro¨dinger equation numerically
for the potential~2! and for a particular value of the couplin
strengthg. If the energyE that we plug into the program
does not coincide with one of the energy eigenvaluesEn , the
solution to the Schro¨dinger equation explodes already fo
relatively small values of the coordinatex. If the energy ei-
genvalue is close to the exact answer, we haveuC(x)u,`
also for larger values ofx. This method yields the unnorma
ized eigenfunctions~the wave functions which still have to
be normalized! and the energy eigenvalues to very high a
curacy ~see Table I!. Renormalization is necessary, for th
computer algebra program needs an initial valueC~0!, which
we set to 1. Substituting the first ten numeric energy eig
values into Eq.~74! and evaluating Eq.~75! up to N59, we
obtain a functionFnum

(N) (b). It converges rapidly for low tem-

ll

e
the
nd

s.

FIG. 5. The free energy of the anharmonic oscillator for int
mediate couplingg51 for b51 up to the fifth variational pertur-
bative order. The values converge exponentially towards the
merical valueFnum

(9) (1)50.6571, which is shown as a straight lin
The dimension of the free energy in natural units is 2 Ry.
9-9
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peratures, corresponding to high values ofb. For high tem-
peratures more terms should be taken into account.

Alternatively, one can also use classical results as a h
temperature cross check: High temperatures correspon
classical statistical distributions such that we can evalu
the classical partition function according to

Zcl5E
2`

1` dx

l th
exp@2bV~x!#, ~76!

with the potential~2! andl th5A2p\2/MkBT. This integral
reduces to

Zcl5
1

2l th
AMv2/2g expS bM2v4

32g DK1/4S bM2v4

32g D ,

~77!

where K1/4(z) is a modified Bessel function. The classic
partition function ~77! can be evaluated for high temper
tures, which corresponds to small values ofb. Consequently,
when we test our variational perturbative results, we co
pare them to the classical free energy for low values ofb,
namely,b, 1

4 . And for high values ofb we use the numeri-
cal approximation,Fnum

(9) (b), for comparison~see Fig. 6!.
In natural units\5kB51 a value ofb5 1

4 corresponds to
a physical temperature ofT51.263106 K.

XII. CONCLUSION AND OUTLOOK

The recursive technique that has been developed thro
out Secs. IV–VI definitely out classes all diagrammatic
perturbative calculations. Using the conventional evaluat
of Feynman diagrams, the partition function and the f

TABLE I. The first ten energy eigenvalues,En , of the anhar-
monic oscillator for intermediate couplingg51. They were ob-
tained by numerically integrating the Schro¨dinger equation with the
initial condition thatC(0)51, C8(0)50 for evenn, and C(0)
50 andC8(0)51 for oddn, and of courseuC(x)u,` for largex.
The energy eigenvalues are given in units of 2 Ry.

n En n En

0 0.803 770 193 2 5 14.203 064 494
1 2.737 889 148 4 6 17.633 934 116
2 5.179 281 461 9 7 21.236 268 598
3 7.942 380 454 4 8 24.994 705 012
4 10.963 538 555 9 28.896 941 521
hi
dt,

03612
h-
to

te

l

-

h-
l
n
e

energy have been evaluated up to third order@14#; here we
obtained the fifth-order result.

For the free energy the convergence of the variatio
perturbation theory was found to be exponential. The f
that the principle of least sensitivity@13# produces extrema
for the odd variational orders and inflection points for ev
orders is reflected in the respective convergence behav
Odd and even orders can best be fitted separately by e
nentials as emphasized in Ref.@11#. Thus, we obtained inter
vals of convergence for certain values of the free ene
which always turned out to contain the exact numerical re
when taking into account the statistical errors associated w
the boundaries of the intervals. For the free energy, the
merical results were obtained using its spectral represe
tion reverting on the first ten energy eigenvalues obtain
with the shooting method, sketched in Sec. XI. Finally, w
note that our high-order perturbative results for the anh
monic imaginary-time evolution amplitude are useful for c
culating other thermodynamic quantities as the correlat
function or the ground state wave function@3,15,16#. Fur-
thermore, it remains to compare these perturbative res
with the semiclassical approximation@17#.
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FIG. 6. The numerical free energyFnum
(9) (b), the first-order

variational perturbative results for the free energyF (1)(b), and the
classical free energyFcl(b)52(ln Zcl)/b, from top to bottom. For
small values of the inverse temperatureb the classical calculations
coincide with the other results. Lower temperatures, correspon
to higher values ofb, reveal differences between the classical a
proach~77! and quantum statistics.
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